본문 바로가기
  • 머킹이의 머신로그
AI

[용어정리] 자연어 용어 정리

by 머킹 2024. 2. 7.
728x90

[자연어 용어 정리] 자연어 용어

 

인퍼런스(inference)

학습을 마친 모델로 실제 과제를 수행하는 행위나 그 과정

모델을 실전에 투입하는 것

 

 

ClassificationDataset 클래스

인스턴스들은 input_ids, attention_mask, token_type_ids, label 4가지 필드를 가리킨다.

 

 

Random Seed

난수 생성 알고리즘을 실행하기 위해 쓰는 수

 

 

자연어 논문 추천

 

1. RoBERTa 

https://arxiv.org/abs/1907.11692

 

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperpar

arxiv.org

 

2. BERT 

https://arxiv.org/abs/1810.04805

 

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unla

arxiv.org

 

 

3. Transformer

https://arxiv.org/abs/1706.03762

 

Attention Is All You Need

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new

arxiv.org

 

 

4. GPT1

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf